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Analytic estimation of the Lyapunov exponent in a mean-field model
undergoing a phase transition

Marie-Christine Firpo*
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The parametric instability contribution to the largest Lyapunov exponentl1 is derived for a mean-field
Hamiltonian model, with attractive long-range interactions. This uses a recent Riemannian approach to de-
scribe Hamiltonian chaos with a large numberN of degrees of freedom. Through microcanonical estimates of
suitable geometrical observables, the mean-field behavior ofl1 is analytically computed and related to the
second-order phase transition undergone by the system. It predicts that chaoticity drops to zero at the critical
temperature and remains vanishing above it, withl1 scaling asN2(1/3) to the leading order inN.
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I. INTRODUCTION

The largest Lyapunov exponentl1 is a good quantity to
measure the degree of chaoticity of a generic nonintegr
Hamiltonian system. However, its numerical computation
quires computing also the microscopic dynamics for a, so
times, very long and, theoretically, infinite time. This m
obviously turn rapidly difficult to tackle and much effort ha
been devoted to deriving some asymptotic scaling laws@1#
and, more recently, to getting analytic estimates by rela
microscopic dynamics with statistical averages, provided
numberN of degrees of freedom is large enough@2–4#. This
latter way of analytically computingl1 as a function of«
5E/N, the energy per degree of freedom, has proved to
remarkably efficient. It reformulates Hamiltonian dynami
in the language of Riemannian geometry, using the fact
the natural motions can be viewed as geodesics of a suit
Riemannian manifold@5#. Chaotic motion then reflects int
the instability of the geodesic flow, which depends on c
vature properties of the manifold. This geometric formu
tion of the dynamics has long been known and has led
fundamental results in abstract ergodic theory when the
godicity of geodesic flows on compact manifolds of negat
curvature was demonstrated by Hedlund and Hopf in 19
and later exploited by Krylov@6#. However, when more
physical Hamiltonian systems come into play, such
coupled nonlinear oscillators, a major source of chaos
pears to be parametric instability activated by a fluctuat
curvature along the geodesics, even when curvature is
ways positive@7,8#. This has been exploited in the theoretic
model proposed by M. Pettini and co-workers. Modeling
effective curvature felt by a geodesic by a Gaussian stoc
tic process, with the mean the average Ricci curvature
variance its fluctuations, and under the ergodic hypoth
replacing the previous geometrical quantities with their
eragesk0 andsk

2 according to the natural ergodic measu
i.e., in the microcanonical ensemble, they derive the follo
ing expression forl1 @2,3#:
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with

L5S 2sk
2t1A64

27
k0

314sk
4t2D 1/3

~2!

andt, a time scale for the stochastic process estimated

t5
pAk0

2Ak0Ak01sk1psk

. ~3!

In this article, we apply these geometrical tools to a me
field Hamiltonian system of globally coupled rotators exh
iting a second-order phase transition at a certain critical
ergy «c . We analytically estimate the parametric instabili
contribution tol1(«) and predict a neat distinction betwee
the two cases:«,«c and «.«c . Numerical simulations
@9,10# seem to qualitatively support the analytical conc
sions. The remarkable behavior of the Lyapunov exponen
the mean-field limit, as a consequence of the simple exp
sions of relevant geometrical quantities as functions of
order parameter, could then be a dynamical signature of
phase transition.

The model at hand will be described in Sec. II and so
useful geometric expressions derived there. A detailed d
vation of the largest Lyapunov exponentl1 as a function of
the energy density« will be exposed in Sec. III, Sec. IV
being devoted to comments and conclusions.

II. MEAN-FIELD MODEL AND FIRST USEFUL
GEOMETRIC EXPRESSIONS

Here we study the so-called mean-field HamiltonianX-Y
model, which can be considered as a toy model for inve
gating long-range interactions in Coulomb systems@11,12#.
The dynamics ofN interacting particles moving on the un
circle P5@0;2p# derives from the following Hamiltonian:
6599 © 1998 The American Physical Society
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H5(
l 51

N pl
2

2
1

c

2N (
l ,r 51

N

@12cos~ql2qr !#5K1V~q!, ~4!

whereK andV stand for the kinetic and the potential energ
respectively. Constantc may be rescaled to11, 0, or21 by
a change of variables. The scaling factor 1/N for the potential
energy ensures that the interaction energy is extensive
emphasizes its mean-field nature. Thus, in the following,
would not deal with the usual thermodynamic limit wi
fixed density, but rather with the mean-field limitN→`,
H/N→«, « finite. Note that the total momentum is also
constant of the motion. However, this will not affect th
following calculation since the potential only depends
positions.

The equilibrium statistical mechanics of this model can
exactly derived@13#. In the case of an attractive potenti
~i.e., c.0), which will be assumed in the following, that is
in the ferromagneticlike case, it predicts a second-or
phase transition with order parameteriM i whereM is the
mean-field magnetizationlike variable defined as

M5S 1

N(
l 51

N

cos~ql !,
1

N(
l 51

N

sin~ql !D . ~5!

This phase transition can be easily conjectured by obser
that at small energyiM i5O(1) with a clustered phase
whereas at large energy, the central limit theorem pred
that iM i5O(N2(1/2)) with particles having random ballisti
motions. It is also interesting to note that introducing t
global variableM enables us to reexpress the equation
motion of any particle as

q̈i52ciM isin~qi2f! where f5arg~M !, ~6!

that is, the equation of a perturbed pendulum, the full sys
being closed by adding the evolution equations foriM i and
f.

Let us now first express in the framework of the Eisenh
metric the Ricci curvature associated to this system, t
derive the microcanonical averages of the geometrical qu
tities involved, via the canonical ensemble, which leads
simpler calculations. Recall here that in the limit of infini
size, that is,N→`, the averages of thermodynamic obse
ables in different ensembles coincide@14#, but not their fluc-
tuations@15#. Therefore, in order to get the fluctuations of
observablef in the microcanonical ensemble, it will be ne
essary to add a corrective term according to the formula
rived in @16#, which is not valid at the critical point:

^d2f &m5^d2f &c1S ]^«&c

]b D 21F]^ f &c

]b G2

, ~7!

where@17#

^d2f &[
1

N
^~ f 2^ f &!2&. ~8!

So, with the Eisenhart metric, the Ricci curvature rea
KR(q)5DV, whereD stands for the Euclidian Laplace op
erator in the configuration space, so that the average R
curvature@3#, defined askR(q)[@KR(q)/N21#, is
,
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kR~q!5
1

N21(i 51

N
]2V~q!

]qi
2

5c2
2

N21
V~q!. ~9!

Moreover, a straightforward calculation gives

V~q!5
cN

2
~12iM i2!. ~10!

Thus we obtain the key expression that the mean Ricci c
vature reads simply in terms of the order parameter,
mean-field magnetizationM as

kR5ciM i2 ~11!

up to aO(N21) term, which, as far as the mean-field limit
concerned, gives a vanishing contribution and will be
nored. It will only play a part in corrections above the tra
sition. It should be pointed out that this expression for t
mean Ricci curvature as a smooth function of the natu
order parameter, the magnetization, is not claimed h
~since not proved! to be a generic property of, for instanc
some class of mean-field Hamiltonian systems. At pres
we should thus consider the results obtained in this article
peculiar features of the model at hand. As only positio
involving quantities come into play, let us now focus on t
contribution of the potential energy to the partition functio
in the canonical ensemble at temperatureT5b21 ~with kB
51):

Zc~b!5E
PN

exp@2bV~q!#dNq

5expS 2b
cN

2 D E
PN

expS b
cN

2
iM i2DdNq.

Then, using the integral representation of Gaussian fu
tions, we get

Zc~b!5expS 2b
cN

2 D E
PN

1

p

3F E
R2

exp~2u212Ab~cN/2!u•M !duGdNq

5expS 2b
cN

2 D ~2p!N

p E
R2

exp~2u2!

3@ I 0~2Ab~c/2N!iui !#Ndu

5~2p!N
N

bcE0

`

rdrexp@2Nc~r ,b!#

wherec(r ,b)[r 2/2bc2 ln@I0(r)#1bc/2 and whereI n stands
for the modified Bessel function of ordern.

Then, according to the saddle-point method, in the lim
N→` the previous integral is fully dominated by the min
mum of c obtained by solving the consistency equati
] rc(r ,b)50, that is,

r

bc
2

I 1~r !

I 0~r !
50. ~12!
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Whenbc,2, c is minimal for r 50, which corresponds
to a vanishing magnetization. Forbc.2, Eq. ~12! admits a
nonvanishing solution notedr * (b), the phase transition tak
ing place forbc52, i.e., forTc5c/2 and«c53c/4.

Before examining these two cases, we establish some
ful canonical relations: aŝV(q)&c52]bln(Zc) and ^„V(q)
2^V(q)&…2&c5]b

2 ln(Zc), one obtains, respectively,

^kR&c5c1
2

N
]bln~Zc!, ~13!

^d2KR&c[
1

N
^~KR2^KR&!2&c5

4

N
]b

2 ln~Zc!. ~14!

Moreover the energy density«(b) is given by

«~b!5
1

2b
2

1

N
]b~ lnZc!. ~15!

In the following, when dealing with microcanonical es
mates, this expression will be implicitly systematically us
to expressb as a function of the energy density. We defi
also the two notationsk0[^kR&m andsk

2[^d2KR&m .

III. ANALYTIC ESTIMATE FOR l1 BELOW
AND ABOVE THE TRANSITION

Let us now derive the analytic estimate forl1 below and
above the transition. Below the critical energy, the sadd
point method gives

Zc~b!.~2p!N
Nr*

bc
exp@2Nc~r * ,b!#A 2p

N] r
2c~r * ,b!

.

~16!

As the ensemble averages^kR&c and ^kR&m coincide in the
mean-field limit, this gives

^kR&m5c1
2

N
]bln~Zc!;c22]b@c„r * ~b!,b…#

5c22
dr*

db
] rcur* 22]bcur* 5c22S 2

r * 2

2b2c
1

c

2D ;

that is,

^kR&m;
r * ~b!2

cb2
. ~17!

Remember thatkR is proportional to the square norm o
the magnetization~11! so that we expect it to exhibit th
same behavior at the transition point with twice the char
teristic exponent. Actually, a straightforward expansion n
the transition leads to

^kR&m;
2~bc22!

b
5

8

114c
~«c2«! for «c*«.

Taking into account the correction~7! and noting that
]b^kR&c5 1

2 ^d2KR&c , one finally obtains
se-

-

-
r

^d2KR&m5^d2KR&cS 11
b2

2
^d2KR&cD 21

~18!

with ^d2KR&c54/N]b
2 ln(Zc);4r* /b2c(]br*2r* /b).

Figure 1 displays the behaviors of both the average R
curvaturek0 and fluctuationssk , with the control paramete
c set equal to 1 in both figures. Using Eqs.~17! and~18!, one
can then derivel1(«) in the clustered phase. The resu
obtained through Eqs.~1–3!, is reported in Fig. 2. When«
approaches«c , expanding the expression for the large
Lyapunov exponentl1(«) provides the scaling law

l1~«!}~«c2«!1/6, ~19!

associating thereby a critical exponent, equal to 1/6, to
dynamical observablel1. Above the critical energy, one ob
tains, in the same way,

Zc~b!.~2p!NexpS 2N
bc

2 D S 12
bc

2 D 21

. ~20!

Here, asiM i2 becomes of orderO(N21), we shall use
the full expressionkR5ciM i22c/N1O(N22). Then

^kR&m5
bc2

N~22bc!
1O~N22!, ~21!

FIG. 1. Analytic expressions for the microcanonical averages
the average Ricci curvaturek0 ~solid curve! and of its fluctuations
sk ~dot-dashed curve! in the mean-field limit, below and above th
phase transition.

FIG. 2. Analytic expression for the largest Lyapunov expon
l1 in the mean-field limit~solid curve! below and above the phas
transition. Analytic corrections~dot-dashed curves! to the mean-
field limit for finite N with N580 andN5200 above«c . Here the
derivation is not restricted to the leading term~23! but computes
Eqs. ~1–3! up to further orders, asN is not very large. There is a
nice fit with results exposed in@10# apart from the vicinity of the
critical energy.
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i.e., the microcanonical average of the Ricci curvature v
ishes in the mean-field limit. Similarly,

^d2KR&c5
4

N
]b

2 ln~Zc!5
4c2

N
~22bc!225O~N21!.

As «(b);(1/2b)1(c/2), the correcting term needed t
get the microcanonical fluctuations is of orderN22, thus
negligible. Then

^d2KR&m;
4c2

N
~22bc!225O~N21!. ~22!

We can keep in further calculations the dominant orde
N, and derive the scaling law withN for the largest
Lyapunov exponent. Using expressions~1–3!, in the limit
N→`, one obtains

l1;
41/3cAbc

~22bc!3/2
N2~1/3!. ~23!

IV. COMMENTS AND CONCLUSIONS

Let us first comment here on the reliability expected
the expressions just derived. As developed in Refs.@2–5#,
the geometrical approach aims at extracting information
at least, an average degree of chaoticity of the dynam
from mean global geometrical properties of the Riemann
manifold constructed from a given Hamiltonian. This impli
the crucial assumption of ergodicity as a way of bypass
the knowledge of the trajectories, i.e., the numerical integ
tion of the equations of motion. This ergodic hypothesis
not expected to be realized in the integrable limits of sm
and large energy, the latter following from the boundedn
of the potential energy in Eq.~4!. However, it is well known
that chaos is not a necessary condition for ergodicity,
most striking piece of evidence being provided by the id
gas of point particles, for which there is no velocity mixin
at all. Also, recent studies@18# have emphasized that ergod
clike properties should depend mainly on the observabl
hand, irrespective of the degree of chaoticity of the dyna
ics. Concerning our model, Ruffo already observed in@12# a
good agreement between Gibbsian predictions and nume
simulations for the observableiM i . Moreover, in the mean
field limit, this happens even in the integrable limit of larg
energy, an explanation for this being provided by a resul
Kac @12,19#, so that the mean-field magnetization appe
like a good observable with respect to ergodicity. Theref
it is not surprising to observe that numerical calculations
the mean Ricci curvature and its variance fit well the mic
canonical predictions presented in Fig. 1@9,20#, except in the
vicinity of the phase transition where finite-N effects domi-
nate. Concerning the transition region, as noted before,
formula @16# used to get fluctuations in the microcanonic
ensemble from canonical ones is not valid at the critical
ergy. Therefore we should exclude in our conclusions
-
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small neighborhood of«c , all the smaller asN is large. So
the analytic estimate forl1(«) in the mean-field limit is
expected to be quite reliable except maybe for small« and in
the vicinity of «c . It should also be noted that the time sca
t estimated as Eq.~3!, that is, the time under which th
effective curvature felt by a geodesic cannot be regarded
random process, is the less solid point of the geometr
modeling@3,4# as Eq.~3! relies mainly on phenomenologica
arguments. Then it can, if necessary, be slightly adjuste
fit numerical calculations. Nonetheless, that estimate fort is
also a powerful tool, as it provides a natural time scale,
pending on«, that should be taken into account to conne
for instance, results for mappings@1# to results for continu-
ous flows as is the case here.

Keeping these remarks in mind, we can now comment
the results obtained in Sec. III. Expression~23! means that,
in this mean-field model, above the critical energy, cha
does not survive to the limitN→`. This can be conjectured
straightforwardly from the equation~6! governing the time
evolution of any particle, which predicts ballistic motion a
iM i vanishes above«c . Moreover, one obtains the scalin
law N2(1/3) for the largest Lyapunov exponent to the leadi
order inN. The same scaling law has been found numerica
by Latora, Rapisarda, and Ruffo@9#. A rather nice fit~see
Fig. 2! is also obtained with Yamaguchi’s simulations@10#
on a wide range of«, except in the vicinity of«c , where
finite size effects smooth the transition. Here strong meta
bility related to critical slowing down may also affect nu
merical results with relaxation times towards equilibrium i
creasing greatly withN. Besides, for a givenN large enough,
expression~23! rightly gives a vanishing Lyapunov expone
in the integrable limit of large energy where rotators tend
behave as free particles.

Concerning the transition region, in spite of the abo
mentioned remarks on the validity of our results at the cr
cal energy, let us mention the remarkable features exhib
by Figs. 1 and 2:k0, sk , andl1 display singular behaviors
at the critical point. Here curvature fluctuations exhibit
discontinuity that is similar to the ‘‘cusp’’ numerically ob
served in@4#. In our case, this appears as a direct con
quence of the second-order phase transition exhibited by
model and, following Eq.~11!, of the expressions of the
different parameters used in the geometrical approach
terms of smooth functions of the order parameter. Follow
conjectures exposed in@4#, the geometrical meaning of thes
singular behaviors might be that a topology change of
‘‘mechanical’’ manifold underlying the dynamics occurs
the critical energy.

Finally, as forl1, its maximal value would be reache
slightly below the critical point and not at the critical poin
Numerical simulations made in@9# for 20 000 particles show
such a tendency. Moreover, when« approaches the critica
energy, calculations~19! show thatl1 goes to 0 as («c
2«)1/6. This suggests that a critical exponent could be as
ciated to the largest Lyapunov exponent as a dynamical
servable.

Further studies should inspect more precisely the reg
where the amplitudes of the curvature and fluctuations
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comparable, around«50.45 ~see Fig. 1!. As observed in
other models, for such a situation strong stochasticity may
expected. A more refined treatment may imply some corr
tions to the Gaussianity of the effective curvature, wh
would take into account further moments of the mean R
curvature. Also, the vicinity of the critical energy, as well
a possible extension of the results obtained in this article
larger class of mean-field Hamiltonian systems deserve,
viously, further investigations.
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